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Enzyme kinetics of multiple alternative substrates
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An innovative theoretical approach that enables the complete characterisation of enzyme–
substrate and enzyme–substrate–competitor reactions is generalised to systems with multiple
alternative substrates. Based on the quasi-steady-state assumption, time-dependent closed
form solutions are presented for cases with even, weak and mixed substrate competition. The
analytic framework should facilitate the development of computational fitting procedures for
progress curves, simplifying the measuring process and increasing the reliability of reaction
constant estimates.

1. Introduction

The introduction of alternative substrates in enzyme processes is an important
approach in the study of living materials and their transformations, as the induced
perturbations allow a more detailed understanding of the normal initial states. In par-
ticular, alternative substrates are employed to bring out the features of enzyme active
centres due to their selective and competitive reactions [38]. Driven by economic and
environmental issues, much effort has been devoted to the industrial synthesis of enan-
tiomerically pure compounds; in such enterprises, it is essential to estimate the kinetic
parameters of the competing racemases in order to ensure efficient resolution [20].

Classical kinetic methods have been applied to enzyme systems involving no
more than three substrates; e.g., the techniques of Daziel coefficients and Haldane re-
lationships [17], which are essentially qualitative, and the more quantitative approaches
of isotope exchange [4,28] and alternative substrates [7–10,27,24,41]. Further exten-
sions to multiple alternative substrates are generally avoided since analysis gets rapidly
complicated without adding much information to that obtained by studying the sub-
strates individually. An approach to overcome this problem has been proposed [27]
where alternative substrates are taken as competitors of a given substrate thus asserting
that insight into the kinetics can be obtained by evaluating their competitive effects.

Previous work on multiple competition [1,6,15,16,35–38] has been mainly con-
cerned with the development of graphical methods to estimate, within the Michaelis–
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Menten (MM) framework, reaction constants and to elucidate the reactant interactions.
Despite their virtues in data visualisation, diagnostics and education, such graphical
methods can be tedious, of relatively poor accuracy and imply acquired expertise
[6,14,18,25]. The general availability of powerful microcomputers, on the other hand,
should now make approaches based on least-squares curve fitting procedures more
attractive [11,12,39], although the hitherto lack of analytic expressions for progress
curves hampers general acceptance as direct numerical integration can be computa-
tionally intensive [19,22,43].

Schnell and Mendoza [29] have revisited the MM formalism for the case of the
basic enzyme–substrate system, and have found for the first time closed form solutions
that characterise the complete evolution of both the reactant concentrations and their
time derivatives. This analytic framework facilitates the development of least-squares
fitting procedures to determine accurate reaction parameters from progress curves (for
an independent verification, see [22]). Therefore, it proposes a more efficient and
reliable experimental methodology based on the timing of a single decay curve instead
of the usual lengthy estimates of initial velocity as a function of initial substrate
concentration from several decay curves. This theoretical approach has been recently
extended to describe the fully competitive enzyme–substrate–competitor system [30],
obtaining closed form solutions for the three nominal cases of competition: even, weak
and strong [26].

In the present report we generalise the work in [29,30] to the case of multiple
alternative substrates. This is the first stage in a current systematic revision of more
complicated enzyme reaction networks. Exclusive multiple competition is reduced to
an n-substrate reaction system in order to make the mathematical formalism more
compact, and is illustrated with solutions for the case of one and two substrates.
The enzyme kinetics of such systems is briefly reviewed, followed by a derivation
of the corresponding analytic solutions for the different cases of competition. Some
conclusions of the work are also discussed.

2. The alternative n-substrate system

The multiple alternative substrates system can be reduced to the scheme

Si + E
ki

k−i

ESi
k2i→ E + Pi (1)

with n substrates (i = 1, . . . ,n). E is the free enzyme, and Si, ESi and Pi respectively
denote the ith substrate, enzyme–substrate complex and product. The parameters ki,
k−i and k2i are positive kinetic constants for the ith channel. Thus, if in an alternative
substrate system i = 1 is taken to be the leading substrate, the system contains (n−1)
competitors (i = 2, . . . ,n).
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Figure 1. Characteristic curves for the enzyme–substrate reaction (1) with n = 1: (a) reactant concentra-
tions and (b) time derivatives. The infinite time range has been reduced to the interval (0, 1) by means
of the exponential time scale τ = 1− 1/ ln(t+ exp(1)). The concentrations have been nondimensionally
scaled as follows: free substrate s1 = [S]1/[S0]1; free enzyme e = [E]/[E0]; complex c1 = [ES]1/[E0]
and product p1 = [P]1/[S0]1. The time derivatives have been scaled to their absolute maximum value:

s1 = d[S]1/dt; e = d[E]/dt; c1 = d[ES]1/dt and p1 = d[P]1/dt.

For the basic enzyme–substrate reaction (n = 1), a time-dependent closed form
solution for the substrate concentration has been derived [29]:[

S′
]

1(t) = W
([

S′0
]

1 exp
(
−κ1t+

[
S′0
]

1

))
, (2)

where W is the omega function W (see the appendix), [S′]1 ≡ [S]1/K1 is the substrate
reduced concentration (with initial value [S′0]1) and κ1 ≡ vmax

1 /K1 is the first-order
rate constant. The familiar MM constant and maximum velocity are defined, respec-
tively, as

K1 ≡
k−1 + k2

k1
and vmax

1 ≡ k2[E0]. (3)

Expression (2) describes the substrate decay during its complete duration (0 6 t <∞),
and its effectiveness in experimental data fitting is ensured by the availability of highly
efficient algorithms for W [2,3,21]. Moreover, as shown in figure 1, characteristic
progress curves for all reactants and their time derivatives can be henceforth generated.

Similar solutions for the fully competitive enzyme–substrate–competitor system
(i = 1, 2) have also been formulated [30]. Making use of the competition matrix
δij ≡ κj/κi to classify different levels of competition [26,30], the solution for evenly
competitive substrates (δ12 ≈ 1) is given by

[
S′
]
i

=
[S′0]i

[S′0]1 + [S′0]2
W
(([

S′0]1 +
[
S′0
]

2

)
exp
(
−κit+

[
S′0
]

1 +
[
S′0
]

2

))
. (4)
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It may be appreciated that the reduced substrate concentrations keep the constant ratio
[S′0]1/[S′0]2 throughout the reaction. For weak competition (δ12 � 1) the solutions
now take the form [

S′′
]

1(t) =W
([

S′′0
]

1 exp
(
−κ̃1t+

[
S′′0
]

1

))
, (5)[

S′′
]

2(t) =
[
S′′0
]

2

(
[S′′]1(t)

[S′′0]1

)δ12

, (6)

where [S′′]i ≡ [S]i/K̃i and κ̃i ≡ vmax
i /K̃i are now referred to as the apparent reduced

concentration and apparent first-order rate constant, respectively, normalised to the
apparent MM constant

K̃i ≡ Ki

(
1 +

[S0]j
Kj

)
. (7)

Therefore, the fast substrate concentration decays in a very similar fashion to the
isolated case, i.e. as “apparently” alone, but the competition causes an increase of the
MM constant [32]; on the other hand, the competitor decay corresponds to that of the
fast substrate but severely attenuated by a power of δ12. Characteristic curves for this
system are depicted in figures 2 and 3. The last case of strong competition (δ12 � 1)
is trivial as its solutions are essentially equations (5) and (6) with permuted indices
noting that δ21 = 1/δ12. An interesting result that emerges from the formalism is the
role played by the apparent MM constants which is only of noteworthy importance in
systems with uneven competition.

3. Enzyme kinetics

By applying the law of mass action, the time evolution of the n-substrate sys-
tem (1) is described by the nonlinear coupled differential equations

d[S]i
dt

=−ki[E][S]i + k−i[ES]i, (8)

d[E]
dt

=
n∑
i=1

(
−ki[E][S]i + (k−i + k2i)[ES]i

)
, (9)

d[ES]i
dt

= ki[E][S]i − (k−i + k2i)[ES]i, (10)

d[P]i
dt

= k2i[ES]i (11)

with i = 1, . . . ,n and initial conditions at t = 0(
[S]i, [E], [ES]i, [P]i

)
=
(
[S0]i, [E0], 0, 0

)
. (12)
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Figure 2. Progress curves for an enzyme–substrate–competitor reaction of the form (1) with n = 2.
In this reaction a weak competitor (δ12 � 1) is assumed. The infinite time range has been reduced
to the interval (0, 1) by means of the exponential time scale τ = 1 − 1/ ln(t + exp(1)). The reactant
concentrations have been nondimensionally scaled as follows: free substrate si = [S]i/[S0]i; free enzyme
e = [E]/[E0]; complex ci = [ES]i/[E0] and product pi = [P]i/[S0]i. The subscripts 1 and 2 denote,

respectively, the substrate and weak competitor.

Since the enzyme E is a catalyst, its total concentration (free plus combined)
must be a constant. This conservation law is readily expressed by adding equations (9)
and (10):

d[E]
dt

+
n∑
i=1

d[ES]i
dt

= 0 ⇒ [E](t) +
n∑
i=1

[ES]i(t) = [E0]. (13)

Also, at any time the sum of the concentrations of the ith free substrate [S]i, its com-
plex [ES]i and product [P]i must be equal to the initial substrate concentration [S0]i;
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Figure 3. Time derivatives for an enzyme–substrate–competitor reaction of the form (1) with n = 2. In
this reaction a weak competitor (δ1 � 1) is assumed. The infinite time range has been reduced to the
interval (0, 1) by means of the exponential time scale τ = 1 − 1/ ln(t + exp(1)). The time derivatives
have been scaled to their absolute maximum value: si = d[S]i/dt; e = d[E]/dt; ci = d[ES]i/dt and

pi = d[P]i/dt. The subscripts 1 and 2 denote, respectively, the substrate and weak competitor.

that is, by adding equations (8), (10) and (11) it may be shown that

d[S]i
dt

+
d[ES]i

dt
+

d[P]i
dt

= 0 ⇒ [S]i(t) + [ES]i(t) + [P]i(t) = [S0]i. (14)

Thus the conservation laws reduce the system of differential equations (8)–(11) to two
equations for Si and ESi,

d[S]i
dt

=−ki

(
[E0]−

n∑
j=1

[ES]j

)
[S]i + k−i[ES]i, (15)
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d[ES]i
dt

= ki

(
[E0]−

n∑
j=1

[ES]j

)
[S]i − (k−i + k2i)[ES]i. (16)

This nonlinear system is complicated to solve, but further simplifications can be intro-
duced if the quasi-steady-state approximation (QSSA) is obeyed.

As previously discussed [5,23,29–34,40], the QSSA implies that after initial tran-
sients, t > tCi say, the complex concentrations remain approximately constant. That
is, in the slow-time regime it can be assumed that

d[ES]i
dt

≈ 0, (17)

resulting in the expression

[ES]i =
[E0][S′]i

1 +
∑

j[S
′]j

, (18)

where [S′]i ≡ [S]i/Ki is the reduced concentration with the MM constant being defined
as

Ki ≡
k−i + k2i

ki
. (19)

Substituting (18) in (11) and simplifying the conservation law (14) with the assump-
tion (17) yields the following differential equation:

d[S′]i
dt

=
−κi[S′]i

1 +
∑

j[S
′]j

, (20)

where

κi ≡
vmax
i

Ki
=
k2i[E0]
Ki

(21)

is the first-order rate constant.
The QSSA also implies that during the transient time, t < tCi , there is not a

significant fraction of the substrate bound to the enzyme, that is,

[S]i ≈ [S0]i, (22)

leading to the important conclusion that (20) is valid in both the fast- and slow-time
regimes. Therefore, solutions valid during the total span of the reaction (0 < t <∞)
can be obtained from the two equations

d[S′]i
dt

=
−κi[S′]i

1 +
∑

j[S
′]j

, (23)

[ES]i =
[E0][S′]i

1 +
∑

j[S
′]j

(
1− exp(−λit)

)
, (24)
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where λi is the constant

λi = kiKi

(
1 +

n∑
j=1

[S′0]j

)
. (25)

Equation (23) can be decoupled by introducing the competition matrix [26,30]

δij ≡
κj
κi

(26)

which, for each pair of substrates, provides a measure of their relative rates. We now
obtain the following differential equation:

d[S′]j
d[S′]i

= δij
[S′]j
[S′]i

, (27)

which is easily integrable to result in the useful working relation

[S′]j(t)
[S′0]j

=

(
[S′]i(t)
[S′0]i

)δij
. (28)

Moreover, noting that the competition matrix obeys the following constraints:

δii = 1, (29)

δji =
1
δij

, (30)

δji′ =
δii′

δij
, (31)

the reaction system is then completely specified by the row vector

δi = (δi1, δi2, . . . , δin). (32)

Equation (28) allows us to conclude that if the competition vector (32) is known for
the ith substrate, then the complete reaction system (i = 1, . . . ,n) is characterised by
solely measuring the concentration decay of the ith substrate. The time behaviour of
the latter can be obtained from the solution of the uncoupled equation

d[S′]i
dt

=
−κi[S′]i

1 +
∑

j[S
′
0]j([S′]i/[S′0]i)

δij
(33)

with the initial condition ([S′]i) = ([S′0]i) at t = 0. Conversely, if the time decays
of all the substrates are measured, then the competition matrix can be in principle
reconstructed.

Following [33,34] and generalising the results in [29,30], two sets of time scales
are considered for the reaction system: a set related to the duration of the initial
transients, tCi , and a second containing the times taken for significant changes in



S. Schnell, C. Mendoza / Enzyme kinetics of multiple alternative substrates 163

the Si concentrations, tSi , that provides a measure of the quasi-steady-state period.
Using (24), the individual fast-time scales are given by tCi = λ−1

i , namely,

tCi =
1

kiKi(1 +
∑

j [S′0]j)
. (34)

The slow-time scales are determined by dividing the total change in substrate concen-
tration [S0]i by the maximum rate of substrate change |d[S]i/dt|max,

tSi =
1 +

∑
j[S
′
0]j

κi
; (35)

hence, the competition matrix can also be written in terms of the ratio of the slow-time
scales,

δij =
tSi
tSj
. (36)

We are now in a position to establish the general conditions of the QSSA for
the reaction scheme under consideration. Extending the prescription in [33,34] for the
basic enzyme reaction (n = 1) to the multiple substrate case (i = 1, . . . ,n), we require
that ∣∣∣∣∆[S′]i

[S′0]i

∣∣∣∣ ≈ tCi
[S′0]i

∣∣∣∣d[S′]i
dt

∣∣∣∣
max
� 1, (37)

which implies that the QSSA is valid if the following condition is obeyed:

max
i=1,...,n

(
[E0]

Ki(1 +
∑

j[S
′
0]j)

)
� 1. (38)

4. Solutions

In order to derive closed form solutions for the alternative substrates, we start by
integrating (33) to obtain the relation

κit =
n∑
j=1

[S′0]j
δij

(
1−

(
[S′]i
[S′0]i

)δij)
− ln

(
[S′]i
[S′0]i

)
. (39)

In the case of the single substrate reaction, the usefulness of this progress-curve
equation to estimate reaction constants from experimental data has been recently dis-
cussed [22,29].
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4.1. Even competition (δi ≈ 1)

In a similar fashion to [30], (39) is rearranged after substituting δij = 1 to obtain
the solution for the time evolution of the reduced concentration of the ith substrate in
terms of the omega function W ,

[
S′
]
i
(t) =

[S′0]i∑
j[S
′
0]j
W

((∑
j

[
S′0
]
j

)
exp

(
−κit+

∑
j

[
S′0
]
j

))
. (40)

This relation shows that in even competition the substrate reduced concentrations at
any time are essentially determined by their initial fractional reduced concentrations
and first-order rate constants, thus keeping the proportion[

S′
]

1 :
[
S′
]

2 :
[
S′
]

3 : · · · :
[
S′
]
n

=
[
S′0
]

1 :
[
S′0
]

2 :
[
S′0
]

3 : · · · :
[
S′0
]
n

(41)

throughout the reaction.

4.2. Weak competition (δi � 1)

For the case where the competition vector δi � 1, a Taylor expansion shows
that, to first order in δij ,(

[S′]i
[S′0]i

)δij
= 1 + δij ln

(
[S′]i
[S′0]i

)
+ O(δij)

2. (42)

Equation (39) then reduces to

κit =
[
S′0
]
i
−
[
S′
]
i
−
(

1 +
∑
j 6=i

[
S′0
]
j

)
ln

(
[S′]i
[S′0]i

)
, (43)

which leads to the following expression for the time evolution of the concentration of
the ith substrate:[

S′
]
i
(t) =

(
1 +

∑
j 6=i

[
S′0
]
j

)
W

(
[S′0]i

1 +
∑

j 6=i[S
′
0]j

exp

( −κit+ [S′0]i
1 +

∑
j 6=i[S

′
0]j

))
. (44)

Making use of relation (28), the solution for the jth substrate (j 6= i) is given by

[
S′]j(t) =

[
S′0
]
j

(
[S′]i(t)
[S′0]i

)δij
. (45)

Furthermore, (44) can be rewritten as[
S′′
]
i
(t) = W

([
S′′0
]
i
exp
(
−κ̃it+

[
S′′0
]
i

))
, (46)
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where [S′′]i ≡ [S]i/K̃i is the apparent reduced concentration and κ̃i ≡ vmax
i /K̃i the

apparent first-order rate constant normalised to the apparent MM constant

K̃i = Ki

(
1 +

∑
j 6=i

[
S′0
]
j

)
. (47)

The ith MM constant displays an increase due to the statistical factor that accounts
for the distribution of enzyme between the E and ESj constituents [32]. Since expres-
sion (46) has a similar form to that for the single substrate reaction (see equation (2)),
the fast competitor substrate behaves as “apparently” alone, and the competition is
adequately taken into account by means of the apparent MM constant.

4.3. Mixed competition

Rather than considering the specific case of strong competition, which as pre-
viously discussed is trivial, we consider the more general case of mixed competition
with l evenly competitive alternative substrates substrates, δij ≈ 1 for j = 1, . . . , l, in
the presence of (n − l) weak competitor substrates, δij � 1 for j = (l + 1), . . . ,n.
The concentration decay of the i = 1, . . . , l competitor substrates is now expressed as[

S′
]
i
(t) =

[S′0]i∑l
j=1[S′0]j

(
1 +

n∑
j=l+1

[
S′0
]
j

)

×W
( ∑l

j=1[S′0]j
1 +

∑n
j=l+1[S′0]j

exp

(−κit+
∑l

j=1[S′0]j
1 +

∑n
j=l+1[S′0]j

))
(48)

while the concentrations of the weak competitor substrates, j = (l + 1), . . . ,n, can
again be derived from relation (28):[

S′
]
j
(t) =

[
S′0
]
j

(
[S′]i(t)
[S′0]i

)δij
. (49)

The effect of the (n− l) weak competitor substrates can again be incorporated in the
apparent MM constant

K̃i = Ki

(
1 +

n∑
j=l+1

[
S′0
]
j

)
(50)

to provide simplified expressions for the apparent reduced concentrations of the n
substrates:[

S′′
]
i
(t) =

[S′′0]i∑l
j=1[S′′0]j

W

((
l∑

j=1

[
S′′0
]
j

)
exp

(
−κ̃it+

l∑
j=1

[
S′′0
]
j

))
(i 6 l), (51)

[
S′′
]
j
(t) =

[
S′′0
]
j

(
[S′′]i(t)

[S′′0]i

)δij
(i > l). (52)
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5. Discussion

We have developed a general and compact formalism that fully describes the
reaction of multiple alternative substrates. The analytic solutions that have been de-
rived for each case of competition are certainly a considerable advance from previous
work that mainly relied on involved graphical methods or numerically integrated equa-
tions. From a qualitative point of view, such solutions bring out in a clear fashion the
collective kinetic behaviour of a set of multiple substrates competing for an enzyme.
Furthermore, as recently illustrated [22], they can also be exploited to implement non-
linear least-squares fitting procedures that can result in estimates of reaction constants
of quantitative reliability. It is worth emphasising that since the proposed curve fitting
is aimed at concentration decays rather than velocities, experimental methodologies
should be greatly simplified. Since the present work is part of a systematic revision
of enzyme reaction networks, we are confident that the formalism can be extended to
tackle multimode inhibition enzyme kinetics that will be reported elsewhere.

Appendix

The omega function, W (x), is defined as the function satisfying the following
transcendental equation [13,42]:

W (x) exp
(
W (x)

)
= x for x > − exp(−1). (53)

A plot of W (x) (see figure 4) shows that for − exp(−1) 6 x < 0 the function has
two possible real values. From these dual values, two real branches of W (x) can
be defined: the upper branch W (x) > −1 and the lower branch W (x) 6 −1. For
convenience, we only consider here the upper branch.

Figure 4. Representation of the W (x) function, showing the upper branch (solid curve) and the lower
branch (dotted curve).
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By rewriting expression (53) as W (x) = x/ exp(W (x)), the omega function W
can be expressed as a continued fraction for |W (x)| < 1,

W (x) =
x

exp(W (x))
=

x

exp
x

exp(W (x))

= · · · = x

exp
x

exp
x

exp
x

. . .

(54)

or, it can be rewritten as W (x) = ln(x/W (x)) leading to the alternative continued
fraction for |W (x)| > 1,

W (x) = ln
x

ln(W (x))
= ln

x

ln
x

ln(W (x))

= · · · = ln
x

ln
x

ln
x

ln
x

. . .

. (55)

The exponential continued fraction (54) can be used to approximate W (x) around
x = 0; however, a polynomial continued fraction approximation is more effective [2,3].
A series expansion of equation (53) at x = − exp(−1) yields

W (x) = −1 +
√
v −

(
1
3
− 11

72

√
v

)
v −

(
43
540
− 769

17280

√
v

)
v2 + O

(
v3), (56)

where v = 2 + 2 exp(1)x. Converting this series into a continued fraction yields

W (x) = −1 +

√
v

1 +

√
v

3 +m

, (57)

where

m =
a
√
v

b+
√
v
. (58)

Adjusting a and b to minimise the error in the interval − exp(−1) 6 x 6 2 gives

a=
4− 3

√
2 + b(2

√
2− 3)√

2− 2
, (59)

b=
28769
6237

(
v +

17035
15549

)1/4

. (60)

For x > 2, the following truncated form of the logarithmic continued fraction (55)
also provides a satisfactory approximation:

W (x) = ln
x

ln
x

lnn(x)

, (61)
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where

n = exp

(
− c

d+ ln(x)

)
(62)

with

c =
42887
38139

, d =
9737

23046
. (63)
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